OSE SEMINAR 2013

Stratified Gaussian Graphical Models

Henrik Nyman

CENTER OF EXCELLENCE IN
OPTIMIZATION AND SYSTEMS ENGINEERING ÅBO AKADEMI UNIVERSITY

TURKU, NOVEMBER 152013

Introduction

- Multivariate Gaussian distribution.
$>$ Gaussian graphical model.
- Graphical illustration of the dependence structure among the variables in a multivariate Gaussian distribution.
- Multivariate Gaussian distributions constitute a very rigid family of distributions in regard to the dependence structure.
- Introduce context-specific independencies in order to accommodate a more diverse class of distributions and models.

Graphical Models

- Marginal independence

$$
X_{1} \perp X_{5}
$$

- Conditional independence

$$
X_{1} \perp X_{4} \mid X_{3}
$$

Multivariate Gaussian Distribution

$$
\begin{aligned}
& X \sim N(\mu, \Sigma) \\
& f_{\mu, \Sigma}(x)=(2 \pi)^{-d / 2}|\Sigma|^{-1 / 2} e^{-1 / 2(x-\mu)^{T} \Sigma^{-1}(x-\mu)} \\
& K=\Sigma^{-1}
\end{aligned}
$$

Graphical Model Meets Multivariate Gaussian

Fitting Σ to Data

- Consider a data matrix X, consisting of n observations (rows) on d variables (columns).
- The maximum likelihood estimates for μ and Σ are calculate

$$
\hat{\mu}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \quad \hat{\Sigma}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\hat{\mu}\right)\left(x_{i}-\hat{\mu}\right)^{T} .
$$

- Using iterative proportional fitting $\hat{\Sigma}$ can be transformed to fit any graph.

Stratified Gaussian Graphical Models

Context-Specific Independence

- Conditional independence that holds only in a subset of the outcome space.

$$
x_{1} \perp X_{2} \mid X_{3}>0
$$

Henrik Nyman:Stratified Gaussian Graphical Models Center of Excellence in Optimization and Systems Engineering at Åbo Akademi University

- Two context-specific independencies

$$
x_{1} \perp x_{2}\left|x_{3}>0 \quad x_{3} \perp x_{2}\right| x_{1}>0 .
$$

- For these to hold simultaneously X_{2} has to be independent of both X_{1} and X_{3} once either $X_{1}>0$ or $X_{3}>0$.

- Transforming the strata to a discrete setting will allow for a coherent analysis of the dependence structure.
- This results in a set of conditions on the variables with each condition $c^{(i)}$ associated with a specific dependence structure in the form of a graph $G^{(i)}$.
\triangleright The conditions form a partition of the outcome space of the variables.
- The condition $c^{(i)}$ can be written in the form $a_{j}^{(i)}<X_{j}<b_{j}^{(i)}$, $j=1, \ldots, d$.
- Using iterative proportional fitting the graph $G^{(i)}$ induces a specific covariance matrix $\Sigma^{(i)}$.

Density Function for Stratified Gaussian Graphical Models

- The density function of a distribution in a stratified Gaussian graphical model can be written

$$
g_{\mu, \Sigma}(x)=\frac{1}{Z} \sum_{i=1}^{\rho} f_{\mu, \Sigma^{(i)}}(x) I_{c^{(i)}}(x)
$$

- The normalizing constant Z is calculated as

$$
Z=\sum_{i=1}^{\rho} \int_{a_{1}^{(i)}}^{b_{1}^{(i)}} \ldots \int_{a_{d}^{(i)}}^{b_{d}^{(i)}} f_{\mu, \Sigma^{(i)}}(x) d x_{d} \ldots d x_{1}
$$

- This distribution belongs to the curved exponential family.
\triangleright Bayesian information criterion can be used to approximate the marginal likelihood of a model.

Math Mark Data

Variable	Label
Mechanics	1
Vectors	2
Algebra	3
Analysis	4
Statistics	5

$$
K=\left(\begin{array}{ccccc}
0.0053 & -0.0025 & -0.0029 & 0.0000 & -0.0001 \\
-0.0025 & 0.0105 & -0.0048 & -0.0008 & -0.0002 \\
-0.0028 & -0.0048 & 0.0273 & -0.0071 & -0.0048 \\
0.0000 & -0.0008 & -0.0071 & 0.0100 & -0.0020 \\
-0.0001 & -0.0002 & -0.0048 & -0.0020 & 0.0065
\end{array}\right)
$$

Considering only the variables X_{1}, X_{2}, and X_{3} we get these elements in the precision matrix.

$$
k_{13}^{(1)}=-0.0078 \quad k_{13}^{(2)}=0.000015
$$

References

H. Nyman, J. Pensar, and J. Corander.

Stratified gaussian graphical models.
2013.
H. Nyman, J. Pensar, T. Koski, and J. Corander.

Stratified graphical models - context-specific independence in graphical models. arXiv:1309.6415 [stat.ML], 2013.
J. Pensar, H. Nyman, T. Koski, and J. Corander.

Labeled directed acyclic graphs: a generalization of context-specific independence in directed graphical models.
arXiv:1310.1187 [stat.ML], 2013.
J. Whittaker.

Graphical models in applied multivariate statistics.
Chichester: Wiley, 1990.

The end of the presentation

Thank you for listening!

The end of the presentation

Thank you for listening!

Questions?

